The Implications of Network Governance, Regulation and Pricing Policies for Distributed and Renewable Energy: A Personal View

SHIMON AWERBUCH, Ph.D. IEA, PARIS

The Impact of Electricity Network Organization, Regulation and Pricing on Renewables and Distributed Generation

Organizational Meeting

PARIS: November 29, 2001

RADICAL CHANGE IS EVERYWHERE

In the US, A Number of Sectors Have Restructured

Manufacturing	\rightarrow	1970's
Financial Services	\rightarrow	1980's
Health Care	\rightarrow	1980's - 90's
Utilities	\rightarrow	late 1990's
Universities	\rightarrow	??

- Change Driven by Markets, Regulation and Technology
- Each Sector Had to:
 - Learn new decision-making models
 - Value & deploy radically new technologies/processes
 - Understand its costs and the value of information

EVOLUTION AND EXPANSION OF TRANSMISSION & DISTRIBUTION FUNCTIONS IN THE US

TRANSMISSION				
	FUNCTION DATE		DISTRIBUTION	
	Transport electricity long distance: low-cost power to load centers; generators site at most economic locations.	1896 – Power line from Niagara Falls	st Resort	Reliably distribute low-cost power
	Connect diverse loads: improve load factor—reduce idle capacity.	Early 1900s – Connect Chicago with suburbs	vider of Last	Same
	Enable regional systems: enhance economy and reliability by pooling generating resources.	1927 PNJ Agreement	ly or Provider	??
	Strengthen inter-regional connections: Further improve reliability; systematize operating rules.	1965 Blackout— NERC	Monopoly	??
	Facilitate bulk power transactions: Support emerging competition in generation.	1992 EPA— open transmission access	and	Facilitate DG/RE for power &
	Arbitrage/Market Making: move power from low- to high-value locations;	Requires properly regulated & incentivized	Seller-Transporter and Market Enhancer	Distribution Augmentation
	Facilitate Information – support parallel information network – electron's info content > its energy content – AA Sabre System	network companies & new operating protocols to support distributed virtual utilities		Crucial– smart metering

THE DISTRIBUTED/VIRTUAL UTILITY: RADICAL ARCHITECTURAL INNOVATION


Radical Architectural Innovation: New components & architecture in electricity generation/delivery

- Fundamentally alters nature of the product:
 - Still electrons, but their generation, availability, quality and delivery options are significantly altered
- Current network organization cannot fully exploit VU ideas

DU/VU: First Reorganization Around New Technology in 100 years

- Electricity analog to Computer Integrated/Flexible Manufacturing and Mass Customization
- Exploits new economics of commodity electrons
 - information value/kWh > energy value/kWh
- Provides appropriate quality, just-in-time energy
 - Minimizes non-value-adding activities:
 - Excess transactions costs, excess reserves & generation capacity

TECHNOLOGIES MATURE BECAUSE THEY EXHAUST EFFICIENCY GAINS

U.S. Average Efficiency for Base-load Steam-Electric Utility Plants

Understanding & Valuing Distributed/VU The Importance of Organizational Context

- Cannot Be Understood in the Context of Existing (19th Century) Utility Organization
 - Difficult to conceptualize/measure benefits
 - Fundamental limitations in our measurement systems and accounting vocabulary
- Experience in other industries suggests that:
 Exploitation of radical innovation requires changes in organizations, supporting systems and infra-structure and can produce benefits not easily conceived in advance
 - Example: Bessemer Steel: Factory reorganization, new floor-plans, plus upstream & downstream flow-control quadruples productivity (Clark)
 - RE/DG: changes in network organization, regulation & pricing
 - Basis for re-conceptualized electricity production/delivery system

Understanding/Valuing Distributed/VU The Importance of Organizational Context (Continued)

- The Problem of Sunk Costs and Embedded Capabilities
 - Organizational Bias Against Radical Innovation (Chandler)
 - IBM and Mainframes vs. PC's
 - Swiss Movements vs. Digital Watches

New RE/DG Technologies Are as Much a Substitute for Central Generation Plants

as

Computers Were a "Substitute" for Typewriters & Calculators

NETWORK ORGANIZATION, REGULATION AND PRICING: KEY POLICY MECHANISMS FOR ACCELERATING DISTRIBUTED GENERATION (DG) AND RENEWABLE ENERGY (RE)

- Transmission is an Essential Element of the Restructuring Picture
 - It is the "Enabler" for achieving promised benefits of restructuring
 - Competitive generation markets require robust, open networks to connect generators and loads
 - Increasing the *number* and *diversity* of suppliers connected to the network enhances competition/reduces market power
 - Potentially important role for DG/RE
- Existing network protocols evolved to support central-station technology under cost-of-service (ratebase) regulation
 - Centralized AGC Protocol
- RE/DG require "Informated" networks and new protocols
 - Decentralized operation & decision-making
 - Loads provide own load-following and other ancillary services
 - Bi-lateral contracting
 - Analogous to manufacturing "Mass-customization," e.g.- Dell computer

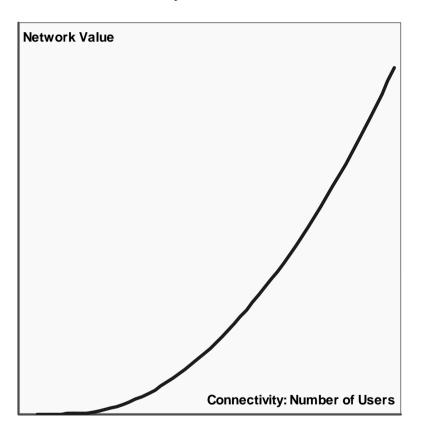
MASS CUSTOMIZATION IN ELECTRICITY: TRANSACTIONS-BASED NETWORKS (A.M. BORBELY)

Move away from reliance on singular total network load figures

- Masks underlying dynamics of millions of transactions
- Inhibits integration of "Intermittent" resources
 - Induces us to make all supply look like GT or other fossil source e.g.
 NETA

Decentralized decision-making -- discrete load matching

- Continuous matching of generation and individual loads
 - e.g.: Intermittent loads and intermittent resources
- Requires real-time pricing (Vickery) to mitigate system overloads, large information volumes and broad connectivity
- Different from the idea of centralized control of DG/RE


NETWORK ORGANIZATION, REGULATION AND PRICING: PRIMARY OBJECTIVES

- Lay the regulatory and institutional groundwork for decentralized, transactions-based network of the future
- Promote Efficient Utilization of Existing Assets
 - Maximizing throughput
 - Alfred Kahn: "The only sin worse than the sin of excess capacity is the sin of not using it!"
- Promote Efficient Increased Access for Loads and Suppliers
 - Exploit Moore's Law x
 - Cost-effectively meet peak demands
- Maintain broad, non-discriminatory access for RE/DG, retail sellers and ancillary service providers
 - Incentives will work better than administrative requirements
 - Telecoms also said you can not hook up

Shimon Awerbuch Ph.D. • Not For Distribution

NETWORK CONNECTIVITY CREATES VALUABLE EXTERNALITIES

Value of the Network: Metcalf"s Law Network value dramatically increases with each additional node

As cited in Downes and Mui, Unleashing the Killer App, Harvard Business School Press, 1998, p. 25.

NETWORK ORGANIZATION, REGULATION AND PRICING: THE PRIMARY OBJECTIVES -- CONTINUED

Promote effective and efficient integration of so-called "intermittent" renewables

- Provide incentives that induce network owner/operator to learn to exploit intermittency
 - Resources have different attributes: making them all behave like a GT is inefficient

Promote transactions and commerce along the network

- Promote efficient, technology-neutral investment decision
- Promote needed system investments to maintain "optimal" (or at least "appropriate") congestion levels

Shimon Awerbuch Ph.D. • Not For Distribution

PROMOTING INCREASED ACCESS FOR RE/DG: MITIGATING THE CONCENTRATIONS OF MARKET-POWER

- Market-Power Concentrations are Suspected in California and Elsewhere
 - Illustrates Problems of Establishing Electricity Markets Dominated by Formerly Regulated Giants
- Network governance & regulation issues are critical in promoting "thirdparty" open access
 - Network system owners/operators must have a stake in promoting access and kWh throughput
 - Can be accomplished with for-profit network operators under price cap or performance based regulation (PBR)
- Appropriate network organization and regulatory regime will help meet recent EC renewables targets in an efficient (cost-minimum) manner

Shimon Awerbuch Ph.D. • Not For Distribution

THE ROLE OF QUALITY IN ELECTRICITY GENERATION/DELIVERY

Manufactured Products	Electricity		
 Lower energy & labor content Higher info-content More value to customer (Drucker) 	Fewer kWh's with higher info- content and greater value: "Fewer, Smarter kWh's"		
Mass-production Versus Flexible, just-in-time Manufacturing and Mass Customization	 Distributed generation Virtual utilities Lower reserve requirements Reduced excess capacity Lower overhead technologies 		

Source: S. Awerbuch, L. Hyman and A. Vesey, *Unlocking the Benefits of Restructuring: A Blueprint for Transmission*, Arlington VA: PUR, 1999; Chapter 4.